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Amoebae are generally assumed to be asexual. We argue that this view is a relict of early classification

schemes that lumped all amoebae together inside the ‘lower’ protozoa separated from the ‘higher’

plants, animals and fungi. This artificial classification allowed microbial eukaryotes, including amoebae,

to be dismissed as primitive, and implied that the biological rules and theories developed for macro-

organisms need not apply to microbes. Eukaryotic diversity is made up of 70þ lineages, most of which

are microbial. Plants, animals and fungi are nested among these microbial lineages. Thus, theories on

the prevalence and maintenance of sex developed for macro-organisms should in fact apply to microbial

eukaryotes, though the theories may need to be refined and generalized (e.g. to account for the variation

in sexual strategies and prevalence of facultative sex in natural populations of many microbial eukaryotes).

We use a revised phylogenetic framework to assess evidence for sex in several amoeboid lineages that are

traditionally considered asexual, and we interpret this evidence in light of theories on the evolution of sex

developed for macro-organisms. We emphasize that the limited data available for many lineages coupled

with natural variation in microbial life cycles overestimate the extent of asexuality. Mapping sexuality onto

the eukaryotic tree of life demonstrates that the majority of amoeboid lineages are, contrary to the popular

belief, anciently sexual and that most asexual groups have probably arisen recently and independently.

Additionally, several unusual genomic traits are prevalent in amoeboid lineages, including cyclic

polyploidy, which may serve as alternative mechanisms to minimize the deleterious effects of asexuality.
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Let us consider for a moment, a single Ameba . . . not as a

cause of disease, but as a unit mass of protoplasm which . . .

performs all of the fundamental vital activities common to

living things . . . there is no reason to doubt that [the chemical

composition of these unit masses] agrees with that of other

living substances, since the accompanying properties of

protoplasm—metabolism, growth and reproduction—are

obviously performed in the same way.

[1]Q1

1. INTRODUCTION
Microbial eukaryotes were historically classified as primi-

tive plants and animals [2] or separated into their own

kingdom [3–5]. This view received wide support with

Whittaker’s five-kingdom classification system [4] and

continues to be popular in many circles. One con-

sequence of lumping microbial eukaryotes into an

artificial taxonomic unit (variously called Protista, Proto-

ctista or Protozoa) is the implicit view that microbes are

fundamentally different entities than plants, animals and

fungi. As a result, microbial eukaryotes have been either

dismissed as primitive or ignored in much of the theoreti-

cal work on eukaryotes, such as speciation theory [6] and

theories on the evolution of sex [7], with the notable

exception of Bell [8]. However, given the current

classification of eukaryotes, this dismissal is no longer

acceptable. In recent analyses, the eukaryotic tree of life

is divided into a number of high-level lineages in which

macro-organisms nest within predominantly microbial

clades, demonstrating that the evolution of multicellular-

ity has arisen multiple times [9–14]. Hence, there is no

evidence to suggest that unicellularity represents by

definition a ‘primitive’ condition in eukaryotes.

The realization that there is no fundamental distinc-

tion between macro- and micro- eukaryotes calls for

reassessment of the applicability of theories on the evol-

ution of sex that were developed in macro-organisms to

their microbial relatives. Differences between macro-

organisms and microbial eukaryotes must be understood,

as suggested by Calkins [1], in terms of cell character-

istics, habit and life cycle rather than an artificial and

outdated taxonomic split. Current evidence suggests

that sex has a single evolutionary origin and was present
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in the last common ancestor of eukaryotes [15]. Hence,

sex is a synapomorphy for extant eukaryotes and, where

sex is absent, it must have been secondarily lost. The

patchy distribution of sexual and asexual amoeboid

lineages in current phylogenetic reconstructions requires

many independent losses of sex (figure 1), or may indicate

that sex is present but not reported in many lineages. We

argue here that the amoeboid lineages are ideal candidates

to investigate whether asexuality has been lost many

times, because amoebae have generally been assumed to

be asexual and are widespread in the tree of eukaryotes.

The body of theory developed from macro-organismal

observations holds that sexuality should be pervasive and

that asexuality should be limited to recent twigs on the

tree of eukaryotic life [16]. We define sex as the presence

of a meiotic reduction of the genome complement fol-

lowed eventually by karyogamy (nuclear fusion) in an

organism’s life cycle. In contrast to amphimixis [17],

our definition allows autogamy to be considered sex.

Sex is argued to be advantageous because it generates

variability by allowing independent assortment of genetic

material through recombination (the advantage of sex

[18,19]). Conversely, asexual lineages are argued to be

subject to the accumulation of deleterious mutations

through a process described as Muller’s ratchet [19,20],

leading to the prediction that asexual lineages should be

short-lived and hence ancient asexuals will be rare

[7,20,21]. On the other hand, sex is not beneficial for

the individual in the short term, because only half of its

genetic material is transmitted to the next generation
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Figure 1. Distribution of amoeboid lineages in the eukaryotic tree of life. This phylogenetic hypothesis of eukaryotic evolution
is adapted from Parfrey et al. [13], and depicts the well-supported higher level groupings of eukaryotes. The lineages that have

members with amoeboid morphology are in bold. Images depict exemplary amoeboid organisms and were retrieved from
micro*scope (http://starcentral.mbl.edu/microscope/portal.php).
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(the cost of meiosis [7]). Recent efforts in modelling the

evolution of sex show that incorporating genetic drift is

essential to understand the dynamics of populations

with finite size: when both drift and selection are taken

into account, sex and recombination bring together alleles

with higher selection coefficients that tend to be found in

different individuals, outcompeting asexual lineages [22].

Thus, there are two main situations where asexuality is

expected: (i) in relatively young lineages such as several

species of scale insects with obligate apomictic thelytoky

[23], and (ii) in systems with very large population

sizes, which rely on strategies for rapid reproduction

(cell/organism replication) [21].

We posit that the purported advantages and disadvan-

tages of sex observed in multicellular macro-organisms

should also apply to microbial eukaryotes. However,

some caveats must be taken into account when comparing

them. Firstly, life cycles are much more varied and com-

plex in microbial eukaryotes [24]. For instance, in most

plants and animals, sex and growth are tightly linked,

i.e. they cannot complete development without sex [15].

Conversely, many microbial eukaryotes are only faculta-

tively sexual, i.e. they turn sex on or off depending on

environmental conditions.

Knowledge about the natural history of microbial

eukaryotes is deeply hindered by the difficulties of obser-

vation, when compared with macro-organisms. In most

cases, organisms are assumed to be asexual because no

sex has been observed; the gold standard for establishing

sexuality remains direct observation of sexual phases of

the life cycle. Proving that sex occurs in microbial eukar-

yotes is further hindered as there are often no sexually

dimorphic forms and sexual life-cycle stages may not

occur readily in laboratory conditions, or they may be

cryptic [25]. Further, many amoebae are not culturable

(e.g. polycystine radiolaria [26]). Despite these difficul-

ties, sex has been observed in several microbial and

non-microbial taxa long considered asexual when cultur-

ing conditions were modified or appropriate mating types

were made available, including Darwinullid ostracods

[27], arbuscular mycorrhizal fungi [28] and the filamen-

tous mould Aspergillus [29], and Dictyostelium (see

below). Thus, it may not be prudent to rely on the

absence of evidence as evidence for the absence of sex

[21,25].

Given the long history of study and diversity of

methods used, evidence for sex in amoeboid lineages

comes in a wide range of forms. We divide the continuum

of evidence for sex into three categories: (i) confirmed

sexual life cycle, (ii) direct evidence for sex, and (iii) indir-

ect evidence that suggests a sexual life cycle but is

inconclusive. A confirmed sexual life cycle is the irrefuta-

ble combination of both meiosis and karyogamy (nuclear

fusion). Direct evidence for sex is provided by micro-

scopic observations of either meiosis or karyogamy

without confirmation of the other, or the presence of

meiosis-specific genes. We realize that for many biologists

documenting meiosis alone is enough to confirm sexu-

ality. However, we feel that observation of both parts of

the cycle is necessary given the variation in sexual mech-

anisms found in microbial eukaryotes. We are defending a

more logical stance: if we define a phenomenon by the

union of two elements, then we must expect to see the

two elements for confirmation of the said phenomenon.

Conversely, the confirmation of karyogamy alone may

indicate a parasexual system (one where subsequent hap-

loidization occurs by some other means than meiosis

[30]; also see the case of Giardia [31]) but more strongly

indicates the possibility of sex. Finally, many character-

istics provide indirect evidence for the hypothesis that

an organism is sexual, but fall short of conclusively

demonstrating sex. These include molecular evidence of

recombination, cytoplasmic fusion, evidence for complex

life cycles with more than one trophic stage and pro-

duction of putative reproductive cells (e.g. swarmer cells

that can be interpreted as gametes).

2. AMOEBOID LINEAGES
The broad distribution of amoeboid organisms across the

eukaryotic tree of life makes them an ideal system for

assessing the applicability of theories on sex to microbial

lineages. Amoeboid organisms are defined by the ability

to produce pseudopodia for locomotion or feeding. They

were historically lumped into a single group, named Sarco-

dina or Rhizopoda depending on the classification system

[32]. However, recent work demonstrates that amoebae

are found in at least 30 distinct lineages (i.e. close to half

of all described eukaryotic lineages) that are scattered

throughout the tree of eukaryotes ([32,33], figure 1).

The majority of these lineages are clustered in the Amoe-

bozoa and Rhizaria [32], with the remaining lineages

scattered across the tree (figure 1). The term ‘amoeba’ is

used here descriptively as a morphological category and

has no phylogenetic meaning. Here, we re-examine the

sexuality of amoebae in the context of the current phyloge-

netic framework of eukaryotes. We review evidence for sex

in lineages traditionally considered asexual, and discuss

reports of sexual life cycles that were originally considered

exceptions or misinterpretations.

(a) Amoebozoa

The Amoebozoa are a higher level grouping encompass-

ing over 5000 species and are currently divided into

approximately 14 lineages (figure 2a). These lineages

include familiar amoebae, such as the star of high

school biology classes Amoeba proteus and the human

enteric parasite Entamoeba histolytica. The majority of

organisms shown to belong within Amoebozoa have

amoeboid characteristics [32], although these encompass

a wide range of morphologies, such as slime moulds,

lobose testate amoebae (Arcellinida) and amoeboflagel-

lates. Asexuality in this group is thought to be a

defining characteristic [35] or sexuality is assumed to be

unknown [36]. However, deep inspection of the litera-

ture reveals evidence for sex in several Amoebozoa

lineages: the dictyostelid sorocarpic slime moulds and

myxogastrid plasmodial slime moulds, Thecamoe-

bida, Arcellinida, Leptomyxida, the genera Entamoeba,

Pelomyxa, Mastigamoeba, Trichosphaerium, the sorocarpic

slime mould Copromyxa and a number of protosteloid

amoebae (figure 2a). We will briefly review the evidence

for each of these groups.

Confirmed sexual life cycles are described for two

lineages: the dictyostelid sorocarpic slime moulds and

the myxogastrid plasmodial slime moulds. The dictyo-

stelids illustrate the difficulty of observing sex in the

laboratory. Known for their asexual life cycles [37,38],
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it was only in the 1970s that appropriate mating types of

Dictyostellium were brought into culture and the sexual life

cycle was fully documented [39–41]. The Myxogastria go

through meiosis and fuse to form diploid plasmodia

[42,43]. Myxogastria have complex mating systems,

with up to 13 mating types (roughly equivalent to sexes)

described [44].

Three lineages within Amoebozoa have direct evidence

of sexual life cycles: the free-living thecamoebids, the

sorocarpic slime mould Copromyxa and the testate

lobose amoebae (Arcellinida). The thecamoebid Sappinia

diploidea makes a bicellular cyst where zygote formation is

thought to occur [45–47]; similar cysts have been

reported in the related Sappinia pedata [48]. The slime

mould Copromyxa has a life cycle that is consistent with

sex, although no secondary confirmation of meiosis has

been described [49]. Copromyxa was initially considered

an acrasid sporocarpic slime mould; however, acrasids

have been shown to belong to the Heterolobosea, which

fall within the Excavata [9], and Copromyxa is its own

lineage [50]. Molecular studies demonstrate that Copro-

myxa is closely related to the Hartmanella within the

Tubulinea (figure 2a; [49]). Multiple lines of evidence

indicate that the Arcellinida, also members of the Tubuli-

nea, are sexual: Arcella vulgaris shows microscopic

evidence of synaptonemal complexes [51], a typical

structure that forms only during meiosis [52]. Molecular

data from both Arcella hemispherica and A. vulgaris also

demonstrate recombination in the actin gene [53]. Para-

quadrulla and Heleopera go through nuclear division and

subsequent fusion [54,55]. Finally, cell fusion (which

we consider indirect evidence for sex, see below) has

been reported for many genera of Arcellinida, though it

is unclear whether karyogamy also occurs when cells

fuse, or whether gamete formation occurs at other time

points, (reviewed in [47]). The most complete report of

karyogamy following cytoplasmic fusion is for Difflugia

lobostoma [56], though Rhumbler [57] did not observe

fusion during long-term culturing of this species. This

apparent contradiction may indicate that these were

different strains, a probable situation given the prevalence

of cryptic species and other uncertainty in the taxonomy

of Arcellinida [58,59]. Different life-cycle observations

can also result from different culturing conditions.

Finally, three taxa have direct, but controversial evi-

dence for sex: cell fusion reports in the free-living naked

amoebae Leptomyxida, a complement of meiotic gene

in the human pathogen E. histolytica and life cycles con-

sistent with sex in Trichosphaerium and others. Cell

fusion is widely reported for Amoebozoa [60,61],

some protosteloid 
amoebae
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Figure 2. Distribution and types of evidence for sex in the main lineages of the two largest amoeboid groups: (a) Amoebozoa
and (b) Rhizaria. The topology of these illustrative trees are a consensus of well-supported lineages derived from Tekle et al.
(2008) Q4, Burki & Pawlowski (2009) Shadwick et al. [34] and Parfrey et al. [13]. Dashed lines represent non-monophyletic

taxa. Black circles, confirmed sexual life cycle; grey circles, direct evidence for sex (meiosis, karyogamy or sex genes); white
circles, indirect evidence for sex (cytoplasmic fusion, presence of putative gametes).

4 D. J. G. Lahr et al. Review. The chastity of amoebae

Proc. R. Soc. B (2011)

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

ARTICLE IN PRESS

rspb20110289—10/3/11—16:10–Copy Edited by: Chitra S



among the leptomyxids, Leptomyxa reticulata [60],

Flabellula baltica [62] and multiple strains of flabellulids

[63] are observed to fuse. Subsequently, the cells separate

or persist as multinucleate stages. It is unclear whether

this fusion facilitates genetic exchange or serves another

purpose [36]; hence, we consider this as only supporting

evidence for sex.

Entamoeba histolytica has long been considered asexual

despite numerous pieces of evidence pointing to the

contrary, such as appearance of putative heterozygote

populations after mixing of homozygotic populations for

certain isozyme classes [64,65]. The availability of the

whole genome [66] shows that E. histolytica has the full

complement of genes required for meiosis [67,68],

which should have decayed if E. histolytica abandoned a

sexual life cycle. The enigmatic genus of marine amoebae

Trichosphaerium is reported to have an alternation of gen-

erations with gamont (sexual, including karyogamy) and

schizont (asexual) stages [69]. Since meiosis has not

been properly documented [70,71], we consider there is

only direct evidence for sex in Trichosphaerium. Complex

life cycles with multiple types of trophic cells that are con-

sistent with sex have been described from a number of

lineages, which are: the polyphyletic protosteloid

amoebae Clastostelium recurvatum, Protosporangium spp.,

Cavostelium apophysatum, Ceratiomyxa fruticulosa and

Ceratiomyxella tahitiensis [34] and the archamoebid

Pelomyxa palustris [72].

(b) Rhizaria

The Rhizaria are a heterogeneous assemblage encom-

passing lineages such as Foraminifera, radiolarians and

euglyphid testate amoebae, chlorarachniophytes, parasitic

groups (Phytomyxea, Haplosporidia) as well as a multitude

of other lesser known flagellates (figure 2b) that emerge as

having fundamental ecological roles [13,73–75]. Filamen-

tous pseudopodia are a recurrent morphological feature

among amoeboid members of Rhizaria, in contrast to the

lobose or broad pseudopodia of many Amoebozoa. Com-

plete sexual life cycles are documented for two lineages:

Foraminifera and Gromia; karyogamy or meiosis (direct

evidence) has been observed in five lineages: Euglyphida,

Thecofilosea, Chlorarachniophyta, Plasmodiophorida and

Phaeodarea; and indirect evidence such as cell fusion or

formation of putative gametes in five lineages: Acantharea,

Polycystinea, Cercomonas, Helkesimastix and Lateromyxa.

There are at least two lineages in the Rhizaria with

confirmed sexual life cycles. Foraminifera are marine

amoebae defined by a dynamic network of anastomosing

pseudopodia [76], and well known for producing intricate

shells. They exhibit complex sexual life cycles, with meio-

sis and gamete production occurring at separate stages

[77]. The Gromiidae also have confirmed sexual life

cycles [78]. These large protists (up to several centi-

metres) have been observed in shallow and deep-sea

sediments [79], where they are capable of denitrification

in anoxic environments [80]. Gromia was originally

classified as a genus of Foraminifera based on gross

morphology, but lacks the distinctive anastomosing

pseudopods of Foraminifera and branches separately in

molecular phylogenies [75]. The life cycle of Gromia

resembles that of Foraminifera, with meiosis and gamete

fusion occurring at different stages.

The Euglyphid testate amoebae and the Thecofilosa

have many reports of cytoplasmic fusion, which we con-

sider indirect evidence, and also reports of karyogamy, a

form of direct evidence. Euglyphid testate amoebae

have primarily been studied from a faunistic perspective,

as bioindicators of past and present environmental

conditions [81,82], and recently from a molecular phylo-

genetic perspective [83–85]. In the family Euglyphidae,

Euglypha alveolata [86], Euglypha scutigera [87] and

Euglypha sp. [88] combine their cellular contents to

form a cyst, or in one case a third larger shell (E. alveolata

[89]). Similar processes have been observed in other clo-

sely related families: Assulinidae [88], Trinematidae

[87,90] and Cyphoderiidae [57,90], and in the unclassi-

fied Tracheleuglypha dentata [91]. The formation of a

third, larger cell has been reported only in Assulinidae

and Euglyphidae [92,93], and not in Trinematidae and

Cyphoderiidae, where cell fusion occurs within one of

the copulating cells.

In some Euglyphids, cytoplasmic fusion is followed by

karyogamy, providing direct evidence for sex. In Trinema

lineare, Valkanovia delicatula [94], Assulina muscorum and

Valkanovia elegans [93], karyogamy was documented but

the ultimate fate of the synkaryon (fused nuclei) remains

unknown. In Corythion delamarei (family Trinematidae),

the synkaryon divides into four nuclei, interpreted as

the result of meiosis [95]. The cytoplasm is then distrib-

uted around the four nuclei, and four naked daughter

cells leave the mother shell, which is left empty. These

naked cells eventually secrete a test. If the interpretation

is correct and C. delamarei indeed goes through meiosis

after cytoplasmic and karyogamy, these organisms spend

most of their life cycle in a haploid stage, being diploid

only when karyogamy occurs. In contrast, T. lineare

(Trinematidae) performs ‘conventional’ binary divisions

in addition to a sexual life cycle similar to C. delamarei

[96]. Binary divisions were not observed in C. delamarei,

or its sister species Corythion dubium [95]. This suggests

that Corythion is a genus of obligate sexual organisms.

In sum, there is direct evidence for sex in four families

out of the five that compose Euglyphida.

The other lineage of filose testate amoebae, Thecofilo-

sea (sensu [97]), presents direct evidence for sex. Recent

phylogenetic analyses show they are not sister to the

Euglyphida [13,75]. These amoebae may have protein-

aceous or agglutinated tests and are often overlooked in

environmental samples owing to their small size.

Cytoplasmic fusion followed by karyogamy has been

observed in both Pseudodifflugia gracilis and P. fascicularis.

The fate of the synkaryon is unknown [94].

Chlorarachniophytes, a group known for their ancient

secondary endosymbiosis [98], go through an elaborate

alternation of flagellate and amoeboid life stages and

show indirect evidence for sex. In Chlorarachnion reptans,

flagellate cells fuse with coccoid cells; these are

interpreted as ‘male’ and ‘female’ gametes [99]. In

Cryptochlora perforans, two morphologically identical

amoeboid cells fuse and produce a cyst where meiosis is

thought to occur in a manner similar to euglyphids.

The DNA content of the cyst is double that of the amoe-

boid stages, suggesting karyogamy [100]. As meiosis has

not been confirmed, we consider this direct evidence as

opposed to confirmed sexual life cycle. The Plasmo-

diophorida are obligate intracellular parasites of plants,

Review. The chastity of amoebae D. J. G. Lahr et al. 5

Proc. R. Soc. B (2011)

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

ARTICLE IN PRESS

rspb20110289—10/3/11—16:10–Copy Edited by: Chitra S



characterized by a specific type of mitotic division named

cruciform nuclear division [101]. They have a complex

life cycle with a plasmodial amoeboid phase, and meiosis

has been confirmed in the group. However, karyogamy

has not yet been observed [101].

The organisms collectively designated ‘Radiolaria’, a

non-monophyletic assemblage containing Phaeodarea,

Acantharea and Polycystinea, are large pelagic cells ubiqui-

tous in the oceans. These organisms are extremely difficult

to maintain in laboratory conditions, and their full life

cycle has never been documented, but observations

reveal evidence that suggests sex. All three groups of radi-

olarians generally produce small bi-flagellated cells, whose

fate remains unclear [26,102], but may be gametes that are

released into the water column.

The strongest evidence for sex within the ‘Radiolaria’

is found in Phaeodarea, specifically in the well-studied

species Aulacantha scolymantha, which falls in the

Cercozoa [75]. Synaptonemal complexes have been

documented between the numerous (1000þ) composite

chromosomes. Each of these composite chromosomes

subsequently segregates into developing bi-flagellated

swarmer cells [103] and divides into eight chromosomes.

However, complete evidence for sex is still lacking for this

group, as cellular fusion and karyogamy have not been

documented. Production of small bi-flagellated swarmer

cells has also been observed in Polycystinea and

Acantharea, which are closely related to Foraminifera

[13]. These have been interpreted as ‘isogametes’ in the

case of Acantharea [104], but cell fusion has not been

observed for either lineage [105].

Evidence for sex becomes scarcer as organisms get

smaller and more difficult to observe. For the small amoe-

boflagellate forms, there are reports of cell fusions with

subsequent encystment: Helkesimastix faecicola [106] and

Cercomonas longicauda [107]. In Cercomonas, cells can

aggregate and fuse in some species, thus forming plas-

modia containing up to 100 nuclei [108,109]. Such

plasmodia have also been documented in the vampyrellid

Lateromyxa gallica [110,111], though the fate of these

nuclei is unknown.

(c) Other amoeboid lineages: Heliozoa,

Heterolobosea, Stramenopila and Opisthokonta

There are other amoeboid lineages scattered in the tree of

eukaryotes, most with limited information on sex. The

‘Heliozoa’ have been split into four morphological

lineages [33], three of which have been confirmed in

molecular reconstructions [112]. One lineage, the

Actinophryida nested within the Stramenopila, is

reported to go through autogamy in the cyst [113]. The

life cycles of all three remaining ‘heliozoan’ lineages, the

Desmothoracida, Centrohelida and Gymnosphaerida

remain poorly documented.

The Heterolobosea are a lineage of amoeboflagellates

nested within the Excavata [114]. Heteramoeba clara is

reported to have a sexual life cycle consisting of a two

mating-type system [115], although there is a certain

amount of doubt to these experiments. The genome of

Naegleria gruberi was recently sequenced, and reveals

the presence of meiosis specific genes, supporting the

presence of sex in this clade [116]. The acrasid cellular

slime moulds have been shown to fall within the

Heterolobosea rather than with other sorocarpic slime

moulds in Amoebozoa [9]. Complete life cycles have

been documented for acrasids, but these contain no

evidence for meiosis or karyogamy. Hence, we consider

there is no evidence pointing to sex in this group.

The Labyrinthulidae and Thraustochytriidae are

amoeboid organisms currently placed within the Strame-

nopila (or Heterokonta), which also includes the diatoms,

brown algae and water moulds, in which sex is well estab-

lished. A complete sexual cycle is described for both of

these amoeboid lineages, with well-documented meiosis

[117,118].

A number of orphan amoeboid lineages have recently

been placed amidst the Opisthokonta (which also

includes the Fungi and Metazoa). Amoebidium parasiti-

cum, originally thought to be a fungus, has a multi-stage

life cycle, but no sex has been reported [119]. Similarly,

the nucleariid amoebae and Fonticula alba have shown

no evidence of sex [49]. However, only a limited

number of studies have focused on these taxa.

3. CONCLUSION
Evolutionary theory predicts that long-lived lineages

should be sexual [7], and that asexual lineages derived

from sexual ancestors will be short-lived owing to the

negative effects of Muller’s ratchet on the genome

[120,121]. The two major clades that are dominated by

amoebae, the Rhizaria and Amoebozoa (figure 2), are cer-

tainly very ancient. Fossil Arcellinida, a clade of testate

amoebae within the Amoebozoa, has been found in

750 Myr old rocks [122]; Foraminifera and Polycystinea,

two clades within Rhizaria, have fossil records that extend

back at least to the Cambrian, i.e. 488–542 Ma ago

[26,123]. Sex is a complex character and it is unlikely

to have evolved independently in multiple lineages, or

lost and regained multiple times [25]. Thus, the presence

of sexual lineages scattered across Amoebozoa and Rhi-

zaria suggests that these clades were ancestrally sexual.

As in other branches of the eukaryotic tree sex may then

have been lost independently in derived lineages.

Some amoeboid lineages may be genuinely asexual.

One candidate for asexuality is A. proteus, which is the

textbook example of binary fission in eukaryotes. A mul-

titude of research groups have been culturing A. proteus

and its relatives for more than a century without uncover-

ing evidence supporting the existence of sex in this group.

Yet, assuming asexuality may be precarious given the

uncertainties regarding culturing conditions. Although

the ultimate proof for sex, as defined here, is the obser-

vation of meiosis and subsequent karyogamy, genomic

data from populations of A. proteus could reveal evidence

of recombination. Such data are yet lacking for these and

the majority of amoeboid protists.

The logical equation ‘lack of evidence ¼ asexual’ is

precarious, but the opposite stance is perhaps equally

dangerous. Assuming that all lineages in Amoebozoa are

sexual may mean discarding the possibility that alterna-

tive means to deal with Muller’s ratchet have arisen

independently. Microbial eukaryote lineages may well

have different strategies, such as lateral gene transfer

(LGT) and cyclic polyploidy. Bdelloid rotifers, a clade

of asexual microscopic animals, provide the most

famous example of an alternative mechanism to avoid
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the ratchet: during rehydration following anhydrobiosis

(a suspended animation state that allows the organism

to survive dehydration), these organisms acquire foreign

DNA and reorganize genomic regions [124]. This may

well be a remarkable example of an evolutionary approach

to reap the benefits of recombination, and could represent

one of many strategies that eukaryotes have explored to

avoid the deleterious effects of Muller’s ratchet. If such

an unusual mechanism appeared in Metazoa, comparably

non-canonical mechanisms may have probably evolved

among 30þ amoeboid lineages.

Cyclic polyploidy may be another evasion method for

avoiding the impact of Muller’s ratchet. Ploidy cycles

may reduce the mutational load usually associated with

high ploidy, and maintain the selective advantages of

haploid genetic transmission [17]. Many microbial

eukaryotes (amoeboid and others) experiment with

ploidy changes that go far beyond the metazoan n–2n

(haploid–diploid) fluctuation [24]. For instance, A. proteus

shows up to 3n variation during interphase, suggesting a

cycle of polyploidization and return to haploidy before

mitosis; and E. histolytica shows heterogeneity in nuclear

ploidy owing to varying levels of endomitosis: within a

population, individual trophozoites exhibit continuous

variation from 4n to 40n [125]. The consequences of

these phenomena are still poorly understood, as impli-

cations about the dynamics of eukaryotic genomes are

only beginning to be explored [24].

An open question is whether LGT through endo-

symbiotic organisms may supply genetic variability to

populations of amoebae. Diverse amoebae (e.g. Acantha-

moeba spp., Hartmannella spp., Arcella spp., Amoeba spp.)

harbour a wide variety of bacterial endosymbionts and

viruses during their life cycle [126–129]. The possibility

of genetic recombination between the amoeba and their

multiple cytoplasmic inhabitants has just begun to be

studied, as is the case of the giant amoeba-infecting

Marseillevirus and Mimivirus that show evidence of

chimeric genomes, with fragments of DNA acquired

from multiple sources [130,131].

Well-resolved phylogenetic trees provide a framework to

investigate possible sexuality and identify truly asexual

lineages. Amoeba proteus is a member of the Amoebidae

clade, for which no evidence for sex has been uncovered.

The closely related Arcellinida are most probably sexual.

Hence, the Amoebidae make an ideal group for deeply

searching for signs of sex/asexuality. Documentation of the

complete life cycle is difficult, but suitable alternative

methods to identify the presence of sex include intense cul-

turing and/or surveying of natural populations to document

recombination (as predicted by meiosis) and genetic studies

to identify a set of meiosis genes. In this case, there are three

possible outcomes: (i) the Amoebidae are indeed sexual and

we failed to document sex so far, (ii) the Arcellinida–Amoe-

bidae ancestral was sexual and the Amoebidae became truly

asexual independently, or (iii) the Amoebidae use a distinct

strategy for evading Muller’s ratchet, which might involve

extensive LGTand/or ploidy cycles.

We conclude that the generalization of widespread

asexuality in amoeboid organisms is superficial and a pro-

duct of two main forces: (i) an intrinsic practical difficulty

in studying microbial organisms, and (ii) the long held

belief that amoeboid organisms are a single unit of evol-

ution, as opposed to a morphological strategy that was

adopted by a wide variety of independent lineages. Amoe-

bae are not fundamentally chaste. The timing and flow of

events that lead each independent lineage to adopt an

asexual or sexual life cycle must be evaluated separately.

A multiple evidence approach, using a phylogenetic fra-

mework, gathering evidence on life cycles, genetic

information on recombination and/or suits Q2of meiotic

genes will be more efficient in reconstructing the history

of eukaryotic sexual life cycles. In line with Calkin’s

reasoning almost a century ago about the chemical consti-

tution of amoebae [1], there is no reason to doubt that the

rules of evolution governing sex in amoeboid organisms

agree with that of other living beings. We predict that

thorough and careful study of amoeboid organisms will

reveal even more unusual ways of performing sex or other-

wise exchanging genetic information. When discussing

the sex of amoeboid protists, the existing evidence does

not evoke chastity but rather Kama Sutra.
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54 Lüftenegger, G. & Foissner, W. 1991 Morphology and

biometry of twelve soil testate amoebae (Protozoa, Rhi-
zopoda) from Australia, Africa, and Austria. Bull. Br.
Mus. Nat. Hist. (Zoology) 57, 1–16.

55 Meisterfeld, R. 2002 Order Arcellinida kent, 1880.
In The illustrated guide to the Protozoa (eds J. J. Lee,

8 D. J. G. Lahr et al. Review. The chastity of amoebae

Proc. R. Soc. B (2011)

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

ARTICLE IN PRESS

rspb20110289—10/3/11—16:10–Copy Edited by: Chitra S

http://dx.doi.org/10.1016/j.tree.2005.09.005
http://dx.doi.org/10.1093/sysbio/syq037
http://dx.doi.org/10.1002/(SICI)1520-6602(1998)1:1%3C27::AID-INBI4%3E3.0.CO;2-6
http://dx.doi.org/10.1002/(SICI)1520-6602(1998)1:1%3C27::AID-INBI4%3E3.0.CO;2-6
http://dx.doi.org/10.1002/(SICI)1520-6602(1998)1:1%3C27::AID-INBI4%3E3.0.CO;2-6
http://dx.doi.org/10.1002/(SICI)1520-6602(1998)1:1%3C27::AID-INBI4%3E3.0.CO;2-6
http://dx.doi.org/10.1002/(SICI)1520-6602(1998)1:1%3C27::AID-INBI4%3E3.0.CO;2-6
http://dx.doi.org/10.1002/(SICI)1520-6602(1998)1:1%3C27::AID-INBI4%3E3.0.CO;2-6
http://dx.doi.org/10.1002/(SICI)1520-6602(1998)1:1%3C27::AID-INBI4%3E3.0.CO;2-6
http://dx.doi.org/10.1007/PL00013156
http://dx.doi.org/10.1111/j.1365-294X.2008.03992.x
http://dx.doi.org/10.1086/280418
http://dx.doi.org/10.1016/0027-5107(64)90047-8
http://dx.doi.org/10.1016/0169-5347(96)81040-8
http://dx.doi.org/10.1016/0169-5347(96)81040-8
http://dx.doi.org/10.1086/599084
http://dx.doi.org/10.1111/j.1469-185x.2010.00127.x
http://dx.doi.org/10.1093/molbev/msn032
http://dx.doi.org/10.1016/j.tim.2010.02.005
http://dx.doi.org/10.1098/rspb.2005.3452
http://dx.doi.org/10.1038&sol;nature67528
http://dx.doi.org/10.1146/annurev.mi.10.100156.002141
http://dx.doi.org/10.1146/annurev.mi.10.100156.002141
http://dx.doi.org/10.1016/j.pt.2009.11.007
http://dx.doi.org/10.1016/j.pt.2009.11.007
http://dx.doi.org/10.1038/251321a0
http://dx.doi.org/10.1038/251321a0
http://dx.doi.org/10.1093/molbev/msq200
http://dx.doi.org/10.1093/molbev/msq200


G. F. Leedale & P. Bradbury), pp. 827–860, 2nd edn.
Lawrence, KS: Allen Press.

56 Dangeard, L. 1937 Memoirs sur le difflugia globulosa

dujardin. Le Botaniste 28, 229–274.
57 Rhumbler, H. 1898 Zelleib-, schalen-, und kern-

verschmelzungen bei den rhizopoden und deren
wahrscheinliche beziehungen zu phylogenetischen vorstu-
fen der metazoenbefruchtung. 2. Biologisches Centralblatt
18, 33–38.

58 Heger, T. J., Mitchell, E. A. D., Ledeganck, P., Vincke,
S., Van de Vijver, B. & Beyens, L. 2009 The curse of
taxonomic uncertainty in biogeographical studies of

free-living terrestrial protists: a case study of testate
amoebae from Amsterdam island. J. Biogeogr. 36,
1551–1560.

59 Lahr, D. J. G. & Lopes, S. 2009 Evaluating the taxo-
nomic identity in four species of the lobose testate

amoebae genus Arcella Ehrenberg, 1832. Acta Protozoolog.
48, 127–142.

60 Seravin, L. N. & Goodkov, A. V. 1984 Possible forms of
agamic genetic interactions in protists and ways of estab-
lishment of the sexual process. Tsitologiya 26, 1224–

1236.
61 Seravin, L. N. & Goodkov, A. V. 1984 The main types

and forms of agamic cell fusion in Protozoa. Tsitologiya
26, 123–131.

62 Smirnov, A. V. & Goodkov, A. V. 1999 An illustrated list

of basic morphotypes of Gymnamoebia (Rhizopoda,
Lobosea). Protistology 1, 20–29.

63 Dykova, I., Fiala, I., Peckova, H. & Dvorakova, H. 2008
Phylogeny of Flabellulidae (Amoebozoa: Leptomyxida)

inferred from SSU rDNA sequences of the type strain
of Flabellula citata Schaeffer, 1926 and newly isolated
strains of marine amoebae. Folia Parasitol. 55, 256–264.

64 Sargeaunt, P. G., Jackson, T. F., Wiffen, S. R. &
Bhojnani, R. 1988 Biological evidence of genetic

exchange in Entamoeba histolytica. Trans. R. Soc. Trop.
Med. Hyg. 82, 862–867.

65 Blanc, D., Nicholls, R. & Sargeaunt, P. G. 1989 Exper-
imental production of new zymodemes of Entamoeba
histolytica supports the hypothesis of genetic exchange.

Trans. R. Soc. Trop. Med. Hyg. 83, 787–790.
66 Loftus, B. et al. 2005 The genome of the protist parasite

Entamoeba histolytica. Nature 433, 865–868.
67 Ramesh, M. A., Malik, S.-B. & Longsdon, J. M. 2005

A phylogenomic inventory of meiotic genes: evidence

for sex in Giardia and an early eukaryotic origin of meio-
sis. Curr. Biol. 15, 185–191.

68 Stanley, J. S. L. 2005 The Entamoeba histolytica genome:
something old, something new, something borrowed

and sex too? Trends Parasitol. 21, 451.
69 Angell, R. W. 1976 Observations on Trichosphaerium pla-

tyxyrum sp. n. J. Protozool. 23, 357–364.
70 Schuster, F. L. 1976 Fine structure of the schizont stage

of the testate marine amoeba, Trichosphaerium sp.

J. Euk. Microbiol. 23, 86–93.
71 Schaudinn, F. R. 1899 Untersuchungen uber den gen-

erationswechsel von Trichosphaerium sieboldi. Sch. Abh.
Konigl. Preuss. Akd. Wiss. (Berlin Suppl.), 1–93Q3 .

72 Whatley, J. & Chapman-Andresen, C. 1990 Phylum

Karyoblastea. In Handbook of Protoctista (eds L. Margulis,
J. O. Corliss, M. Melkonian & D. Chapman), pp. 167–
185. Boston, MA: Jones and Bartlett Publishers.

73 Ekelund, F. & Patterson, D. J. 1997 Some heterotrophic
flagellates from a cultivated soil in Australia. Arch.
Protistenk. 148, 461–478.

74 Foissner, W. 1991 Diversity and ecology of soil flagel-
lates. In The biology of free-living heterotrophic flagellates
(eds D. J. Patterson & J. Larsen), pp. 93–112. Oxford,
UK: Clarendon Press.

75 Bass, D., Chao, E. E. Y., Nikolaev, S., Yabuki, A.,
Ishida, K. I., Berney, C., Pakzad, U., Wylezich, C. &
Cavalier-Smith, T. 2009 Phylogeny of novel naked

filose and reticulose Cercozoa: Granofilosea cl. n. and
Proteomyxidea revised. Protist 160, 75–109.

76 Bowser, S. S. & Travis, J. L. 2002 Reticulopodia: struc-
tural and behavioral basis for the suprageneric
placement of granuloreticulosan protists. J. Foraminiferal
Res. 32, 440–447.

77 Goldstein, S. T. 1999 Foraminifera: a biological over-
view. In Modern foraminifera (ed. B. K. Sen Gupta),
pp. 37–56. Dordrecht, The Netherlands: Kluwer.

78 Arnold, Z. M. 1972 Observations on the biology of the
protozoan Gromia oviformis Dujardin. Berkley, CA:
University of California Press.

79 Matz, M. V., Frank, T. M., Marshall, N. J., Widder, E.
A. & Johnsen, S. 2008 Giant deep-sea protist produces

bilaterian-like traces. Curr. Biol. 18, 1849–1854.
(doi:10.1016/j.cub.2008.10.028)

80 Pina-Ochoa, E. et al. 2010 Widespread occurrence of
nitrate storage and denitrification among Foraminifera
and Gromiida. Proc. Natl Acad. Sci. USA 107, 1148–

1153. (doi:10.1073/pnas.0908440107)
81 Tolonen, K., Warner, B. G. & Vasander, H. 1992 Ecology

of testaceans (Protozoa, Rhizopoda) in mires in southern
finland. I. Autecology. Arch. Protistenk. 142, 119–138.

82 Mitchell, E. A. D., Charman, D. J. & Warner, B. G.

2008 Testate amoebae analysis in ecological and paleoe-
cological studies of wetlands: past, present and future.
Biodivers. Conserv. 17, 2115–2137. (doi:10.1007/
s10531-007-9221-3)

83 Wylezich, C., Meisterfeld, R., Meisterfeld, S. &
Schlegel, M. 2002 Phylogenetic analyses of small
subunit ribosomal RNA coding regions reveal a mono-
phyletic lineage of euglyphid testate amoebae (Order
Euglyphida). J. Eukaryot. Microbiol. 49, 108–118.

(doi:10.1111/j.1550-7408.2002.tb00352.x)
84 Lara, E., Heger, T. J., Mitchell, E. A. D., Meisterfeld, R. &

Ekelund, F. 2007 SSU rRNA reveals a sequential increase
in shell complexity among the euglyphid testate amoebae
(Rhizaria: Euglyphida). Protist 158, 229–237. (doi:10.

1016/j.protis.2006.11.006)
85 Heger, T. J., Mitchell, E. A. D., Todorov, M.,

Golemansky, V., Lara, E., Leander, B. S. & Pawlowski, J.
2010 Molecular phylogeny of euglyphid testate amoebae
(Cercozoa: Euglyphida) suggests transitions between

marine supralittoral and freshwater/terrestrial environ-
ments are infrequent. Mol. Phylogenet. Evol. 55, 113–122.
(doi:10.1016/j.ympev.2009.11.023)

86 Reukauf, E. 1912 Zur encystierung von Euglypha alveo-
lata. Zoolog. Anzeiger 39, 372–375.

87 Penard, E. 1902 Faune rhizopodique du bassin du léman.
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