Building rankings from hierachical systems of ordinal indicators

Marco Fattore, Alberto Arcagni

University of Milano – Bicocca

Neuchâtel, October 2018

Hierarchical Multi Indicator Systems

- ♦ Indicators are organized by **categories** representing different **topics** of the analysis
- ♦ The **goal** is to get a synthesis and a ranking for the whole system
- ♦ The **usual solution** is to get global ranking from the poset obtained by the **intersection** of the intermediate rankings

Inefficiency

- Ranking extraction is a "complexity" reduction process which necessarily loses information on the input posets
- ♦ **Repeated** ranking extraction as in the usual solution (firstly to extract intermediate ranking then for the global one) increases the information loss
- ♦ There is usually **no control** on such information loss

Our approach

- ♦ We want to **preserve as much complexity as possible**, so we want to find out a way to "put together" the input posets into a "synthetic" one
- ♦ The construction of the "synthetic" poset must be performed as an "order structures" preserving process
- ♦ We want to **control** the information loss

The algorithm

- ♦ The **object of each iteration** is a poset that is a synthesis of the input posets
- ♦ The **initial poset** is the one composed by all the comparabilities shared by the input posets but also the one with the largest "complexity": the intersection poset
- ♦ For **each iteration** a comparability is introduced to reduce the "complexty". For each comparability is evaluated a loss function
- The comparability introduced is the one that minimize it
- The algorithm has a finite number of iterations, lower or equal to the number of incomparabilities of the intersection poset
- The value of the loss function associated to the inserted comparability is associated to the iteration

Loss function

$$d(l) = \frac{1}{k} \sum_{j=1}^{k} \frac{\|MRP(l) - MRP(\Pi_{j})\|_{1}}{\|MRP(\Pi_{j})\|_{1}}$$

♦ The loss function is the **average of the distances** of the MRP matrix of the iteration poset from the MRP matrices of the input posets

Example: input posets

Example: Intersection

$$d(0) = \frac{0.3 + 0.4 + 0.4}{3} = 0.3667$$

Example: First iteration

Example: 2nd iteration

Example: 3rd iteration

Example: 4th iteration

Example: 5th iteration

Example: Complete order

Example: Loss function

5 iterations

Multipurpose survey: aspects of daily life

Intersection

Loss function

94 iterations

Optimum

- ♦ Optimum at 25-th iteration
- d(25) = 0.2117

Complete order

Tre				
Val Fri Lom Emi Ven Tos Lig Pie Umb Abr Mar Laz Bas Mol Pug Sar Cal Sic Cam	1	Trentino – Alto Adige	11	Abruzzo
	2	Aosta Valley	12	Marche
	3	Friuli Venezia Giulia	13	Lazio
	4	Lombardy	14	Basilicata
	5	Emilia – Romagna	15	Molise
	6	Veneto	16	Apulia
	7	Tuscany	17	Sardinia
	8	Liguria	18	Calabria
	9	Piedmont	19	Sicily
	10	Umbria	20	Campania

•
$$d(94) = 0.2889$$

Conclusions

- ♦ The researcher can **choose** the step poset to adopt: the one that minimize the loss function or the final one that minimize the "dimensionality", a complete order
- ♦ If the researcher choose the complete order, he has the corresponding absolute value of the loss function and can compare it with its minimum
- ♦ The algorithm is **heuristic** but it returns reasonable results
- Differently by the "usual solution" the "dimensionality" reduction is applied only once and comparabilities are introduced taking into account all the input posets and not a synthesis of them
- ♦ Different **loss functions** can be proposed in order to reduce the **computational intensity** and to search **different optima**
- ♦ The algorithm is going to be released in the R package PARSEC